Surface Selection in Health Care - Part 2

In the first part of this series we discussed how materials that are selected can play a role on infection control. Some additional considerations are: 

2) Surface Assemblies

Selecting a surface based on sample swatches alone does not provide enough insight into what the potential challenges might be. It is critical that during the evaluation process, the assembly of surfaces is understood. Different materials and textiles are often combined into a single product, making the final product difficult (or even impossible) to clean/disinfect. It is true that some of this is completely unavoidable. However, it is possible to reduce the number of products in a room that present difficult or impossible disinfection challenges.

Studies have shown that the area within three feet of the patient in a hospital room is typically heavy with bio-burden, due to patient shedding (see Microbiology section). Cross-contamination can easily occur if levels of bio-burden are not continually reduced to safe levels by cleaning and disinfection. An evaluation of assembled surfaces surrounding the patient will provide insight into the challenges faced when trying to clean and disinfect the many combinations of materials, textures and textiles. Seams, baton strips and connects between surface materials create additional microbial reservoirs that often can be completely avoided when this problem is understood.

3) Microbiology

A person typically sheds some 37 million bacteria every hour into the surrounding air and onto environmental surfaces that are continually being touched. Patients are a major source of contamination, and bio-burden is heaviest within three feet of the patient. If the patient is mobile, the patient bathroom is also an area where bio-burden is high. With the knowledge that pathogens survive for days, weeks and months, these areas absolutely need to be able to be effectively cleaned.

Patient shedding is not the only contamination threat. Toilet spray (also referred to as “toilet plume”) plays a major role in the transmission of infectious diseases. Ironically, patient toilets do not typically have lids, due at least in part to the difficulty in cleaning them. After discarding objects laden with viruses and bacteria into a toilet, the toilet is flushed. As a result, these microbes are released into the air and land on surfaces at a relatively high concentration within a three-foot radius of the toilet. This area typically includes a variety of ceramic tiles and many grout lines. Other materials assembled in this area include towels, shower curtains, sinks with faucets. As a result, these surfaces become microbial reservoirs that provide safe harbor where disinfectant products cannot reach their intended target.

4) Location

The location of a surface matters. Different departments within the hospital require different surface selection criteria. In areas such as the Emergency Department or Surgery, healthcare professionals are faced with the need to turn over rooms quickly. Often this means that healthcare workers with a primary responsibility for patient care must also clean, disinfect and turnover a room.

I have had many discussions with these professionals who do not understand how critical it is to effectively clean/disinfect all surfaces. A quick tour of these areas immediately reveals a plethora of mixed surface materials and, ultimately, microbial reservoirs. The requirement to turn over rooms quickly in high traffic, highly contaminated areas sets healthcare professionals up for failure.

Recently, a facility was confronted with a community-based outbreak of C. Difficle that had started in the ER and was spreading through the facility.  The Infection Prevention staff sent out a protocol that covered personal protective equipment (PPE), hand hygiene, patient assessments and disinfection protocols, but failed to address the evaluation of surfaces and the manner in which they are cleaned. These surfaces may have been a major contributor to persistence of the outbreak.

5) Human Behaviour

Patients, healthcare workers and visitors interact with surfaces in many ways. Clothing, equipment and hands become contaminated and move pathogens throughout the patient room and the entire facility.

While being an advocate for a patient during a 3-day acute care hospital stay, I took the opportunity to observe and document human behaviour around surfaces. The behaviour of healthcare workers was fairly common. “Pumping in” by using the hand sanitizer was routine and a good start. However, the very next action was, nearly universally, to reach into a pocket in their scrubs to retrieve a pen and paper. I am sure this happened in every patient room.

Most healthcare workers interacted with surfaces in similar ways and in usually in the same order: computer, mouse, nurse call button, controls on the IV and IV pole, catheter bag, bed, bedding, etc.

Visitors interacted with many of the same surfaces, but they also used areas, such as the windowsill, bed and chair next to the patient bed, which was often covered with a blanket for the patient to sit on. Visitors also used the patient bathroom.

From my observations, specific surfaces that should have been considered “high touch” were not easy to identify, since many people touched virtually every surface within three feet of the patient frequently. On a side note, it is interesting to note that my observation of Environment Services staff in that facility revealed that they cleaned only a few surfaces and ignored other highly touched surfaces during the daily cleaning process. In the absence of thorough cleaning and disinfection, bioburden would have continued to accumulate for days.

To read the full Infection Control article, Click Here