Study: The Impact of a Central Line Infection Control Program
Background
Prevention of central line-associated bloodstream infection (CLABSI) remains a major issue for patient safety and costs. In fact, the CLABSI rate is proposed as an indicator of quality of care in ICU in several countries. Studies have shown that education and training of ICU health care workers (HCW) concerning CVC care is efficient in preventing CLABSI. Interventions focusing primarily on central-line insertion procedures, emphasized staff education, compliance to basic hygiene, and timely removal of CVC have been associated with substantial reductions in CLABSI rates. Few studies have included the evaluation of post-insertion care.
The Study
The objective of this study was to examine the effect on CLABSI rate of an external monitoring of CVC care compliance process with feedback aimed mainly at nurses. The major role of ICU nurses in reducing CLABSI rates was previously demonstrated with education programs dedicated especially to nurses. To optimize prevention, it is now accepted that the “bundle” concept should be implemented, including five simple interventions supported by strong scientific evidence for effectiveness: optimal hand hygiene, chlorhexidine skin antisepsis, maximal barrier precautions for CVC insertion, use of optimal insertion sites, and prompt catheter removal. This bundle is currently being used in several countries. Numerous studies have reported successful results after implementation of a continuous, multifaceted strategy based on these measures. In our study, compliance with insertion recommendations (observed in the first month of P2) was initially high, most likely because of previous sensitization and use of CVC kits. More recent studies suggest an added benefit from broadening prevention strategies to include evidence-based best practices for central-line maintenance. We chose to also monitor post-insertion CVC care such as quality of dressing, systematic disinfection before use of any access points (hubs-connectors-injection ports) and hand hygiene before CVC contact. Our intervention resulted in a transient but significant reduction in CLABSI rates and the median percentage of compliance with each procedure for CVC care was greater than 80%. As demonstrated by Furuya et al., the use of a CVC bundle is associated with lower infection rates only when compliance is high. On the other hand, we observed no decrease in the CVC utilization ratio, but we did not implement a program focused on daily review of unnecessary catheters except indirectly with the surveillance of CVC placement dating. Finally, we achieved a significant decrease in femoral access during P2, with limited effect on the CLABSI rate. It is known that the risk of CLABSI varied according to the site of central venous access. But we compared only femoral central venous access site to non-femoral central venous access site without regarding in details subclavian and internal jugular routes.
The difference of CLABSI incidence rate reduction observed between P2 and P1 in hospitals A and B could be explained by the significantly different participation of nurses recorded in the monthly meetings, reflecting less engagement at hospital B. We also observed a lack of investment by the ICU physicians as represented by their absence from the monthly meetings and the small amount of feedback posted in the ICU during P3 in hospital B. This may have influenced the outcome, as the HCW in the last may be less professionally motivated than the others. Ensuring staff understand the change process is fundamental to the success of a quality improvement.
We observed a non-significant reduction of CLABSI incidence rate in P3 in comparison with P1, while Pronovost et al. reported a sustained reduction of up to 66% in CLABSI rates after 18 months of follow-up in a larger study with an educational intervention based mainly on use of the CVC insertion bundle. Potentially, the lack of individual face-to-face contact and feedback maybe explains the lack of sustainability of our program, as described in another study. In that study, each HCW was approached individually regarding the insertion technique and maintenance of CVC and therefore felt valued and motivated. Our approach involved collective feedback through monthly and non-mandatory meetings. Successful practice changes require buy-in from participants. Therefore, it is necessary to pay close attention to perceived barriers. More research is needed to develop a more direct measure of HCW engagement in quality and safety.
Another explanation for the declining performance during P3 could be the high turnover in nurse staffing and the high percentage of pool nurses recorded, particularly in hospital A. Robert et al. suggested in a case–control study that nurse staffing composition (i.e., pool-nurse–to-patient ratio) might be related to primary BSI risk. In our study, the monitoring of process indicators was terminated at the end of P2, and in the following months, there were no more clinical reminders for ICU staff. Moreover, no specific training related to line care was planned for pool staff. Based on our experience, account should be taken of these structural parameters to adjust in further studies the frequency of process measurements. Finally, feedback alone (as done in P3) was ineffective for altering provider behaviors.
There are a number of limitations to this study. First, it is not a randomized trial, but a quasi-experimental study without a concurrent control group, a design frequently used for this type of study. Thus, other unmeasured factors, such as long-term trends or seasonal confounders might have occurred coincident with the intervention resulting in independent variations in CLABSI rates. Second, unmeasured factors such as patient risk severity may have confounded CLABSI rates; however, it is unlikely that the case composition would have changed in the same manner during the intervention phase in all 5 ICUs.
Conclusions
Our encouraging results emphasized the value of this intervention based on auditing and feedback to reinforce practice changes to decrease CLABSI rates. This intervention was dependent on local factors such as the lack of leadership and support inside the ICU and the high turnover of ICU nurses, as illustrated by the difference observed between the 2 hospitals despite a targeted compliance with CVC care recommendations achieved. Our study underlines the need to monitor behavioral parameters in addition to process and results indicators, to analyze the benefits of any new infection control program. Further studies are needed to determine which strategies are most effective in changing professional behavior and in promoting long-term, sustained adherence to evidence-based practices for CLABSI prevention.