
Are We Ready For An Implant That Can Change Our Moods?
Our thoughts and fears, movements and sensations all arise from the electrical blips of billions of neurons in our brain. Streams of electricity flow through neural circuits to govern these actions of the brain and body, and some scientists think that many neurological and psychiatric disorders may result from dysfunctional circuits.
As this understanding has grown, some scientists have asked whether we could locate these faulty circuits, reach deep into the brain and nudge the flow to a more functional state, treating the underlying neurobiological cause of ailments like tremors or depression.
The idea of changing the brain for the better with electricity is not new, but deep brain stimulation takes a more targeted approach than the electroconvulsive therapy introduced in the 1930s. DBS seeks to correct a specific dysfunction in the brain by introducing precisely timed electric pulses to specific regions. It works by the action of a very precise electrode that is surgically inserted deep in the brain and typically controlled by a device implanted under the collarbone. Once in place, doctors can externally tailor the pulses to a frequency that they hope will fix the faulty circuit.
The FDA has only approved deep brain stimulation for a handful of conditions, including movement disorders — dystonia, essential tremor and symptoms of Parkinson's disease — and a type of treatment-resistant epilepsy. Now, many scientists in the U.S. and around the globe are experimenting with the technology for psychiatric conditions like depression or obsessive-compulsive disorder.
The results of clinical studies so far are very mixed: Some patients say they have been totally transformed while others feel no effect at all, or they get worse.
Yet research continues and the technology's potential to instantly and powerfully change mood raises ethical, social and cultural questions. NPR spoke to neuroethicist, James Giordano, chief of the Neuroethics Studies Program at Georgetown University Medical Center, about this new technology and its potential benefits and harms when used for psychiatric treatment. In addition to his work at Georgetown, Giordano has consulted with the U.S. military about these technologies and their possible use.
This interview includes answers from two separate conversations with Giordano, one conducted by Alix Spiegel and one by Jonathan Lambert. It has been edited for clarity and length.
What is deep brain stimulation and how does it work?
Scientists have been stimulating brains for a while now, but it has historically been quite crude. A neurosurgeon [would] touch a brain area with an electrode, and see what happened, what types of functions were affected. But we didn't have a detailed picture of what we wanted to target in the brain, and the electrodes themselves were not very precise.
Now we have a much more detailed map of the networks and nodes of neurons involved in different pathologies [like Parkinson's, obsessive-compulsive disorder, etc.] or different thought patterns or emotions. Deep brain stimulation provides a fairly specific and very precise way to utilize electrodes to deliver electrical current in and around a small set of brain cells to turn them on or modulate their activity.
Modify the circuit, and you can modify the behavior. The goal is to use DBS to modify the circuits in such a way as to improve symptoms in a very specific and precise way.
How do you know what kinds of specific inputs you want the electrode to a deliver, and where in the brain to deliver them?
There's an old adage in brain science: "When you've seen one brain, you've seen one brain." This is certainly true, but all brains have a lot of similarity on which individual variation is built because brain structures are changed and developed as a consequence of experience.
So when implanting a device, we know generally where we're going, but because the patient is awake while we're implanting the device, we can further tailor it to know where precisely to put it for the desired effect. More fine-tuning, in terms of the kind of stimulation to provide, can be done after surgery, because the device can be tuned externally.
Though it's not yet FDA approved for them, there is ongoing research on treating psychiatric disorders with DBS? What is the research finding so far?
Many studies are certainly finding evidence that DBS can be effective for treating disorders like Tourette's syndrome, obsessive-compulsive disorder, and even depression. Patients are reporting a reduction in the symptoms, but we certainly still have many questions that need answering. For example, when do we treat with DBS? Early in the development of a disorder? Later, after other options have been exhausted? These are questions that still need answering.
How would you explain the difference between how an antidepressants affects the brain and how deep brain stimulation works?
A drug like Prozac or antidepressant drugs is basically like throwing water on your face to get a drink of water. Using something like deep brain stimulation is like putting a drop of water on your tongue. We can increase the specificity and precision ... and, in many ways, the precision and specificity of deep brain stimulation makes it a more effective tool. It can be turned on and turned off. It can be adjusted in the very short term so it can be a more flexible tool that allows a much more precise control of mood.
And compared with antidepressants, are there differences in moral or ethical implications in the use of a treatment that allows us to act so specifically on mood?
Specificity is power. And the moral obligation that comes with great power is overwhelming. The responsibility to understand as best as conceivably possible what you're doing not only on a neurobiological level, but also on an existential and even social level. What are you doing? Are you creating new normal [in terms of mood]? And if you're creating new normal, do we have what I'll call "the ethical equipment" on board to be able to address this? In some cases I think the answer is yes, but I think in other cases what you're going to begin to see is that new ethical principles may need to be developed because of the potential and reality of the way these things are being used.
For example, expressive creativity. Is there an ethical principle of self-creativity ... that I can define myself and say I want to create myself in these ways?
Do you mean, theoretically, in the future, you could go to a doctor and say I want to be a great artist?
Now we're not quite to that point, but I could certainly go to a physician and say I want to be more outgoing, I want to be less inhibited. I'd like to be happier on a daily basis. I'd like to feel more enlightened in my daily experiences ... In an open society, are we saying that one should be able to define 'I want to be this' and this is a tool to get there? Perhaps, but then we also have to balance that. What about others? ... This gets back to a question of fairness. Can everybody get this? Who's going to get this?
To read this article in it entirety CLICK HERE.